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Instability statistics and mixing rates
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We claim that looking at probability distributions of finite time largest Lyapunov exponents, and more
precisely studying their large deviation properties, yields an extremely powerful technique to get quantitative
estimates of polynomial decay rates of time correlations and Poincaré recurrences in the-quite-delicate case of

dynamical systems with weak chaotic properties.
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I. INTRODUCTION

A general problem of dynamical systems theory concerns
both the evaluation of time or space averages, and an under-
standing of how finite order estimates of such averages con-
verge to their asymptotic limit. The second feature is tightly
connected to a quantitative estimation of mixing rates, that is
how time correlations asymptotically decay. Though in ex-
tremely simplified models (simple Markov chains, lattice
models with a finite transition matrix) the connection be-
tween convergence of finite order estimates and mixing prop-
erties may be established quite easily, the issue in more gen-
eral contexts is much more complicated, and many facets of
the problem still remain as open problems. In particular
when weakly chaotic systems are considered it is expected
that sticking to regular structures in the phase space severely
degrades mixing properties, and critical, polynomial decay of
temporal correlations can be observed. We remark that mixed
systems are thought to be generic [1] and that slow polyno-
mial decay may influence deeply deterministic transport
properties [2], as the Kubo formula suggests. We here pro-
pose to look at large deviation properties of finite time esti-
mates as an efficient tool to get quantitative information
about mixing properties of the system. We emphasize that
the idea of a relationship between the tails of finite time
distributions and memory effects is not new: for instance
inspection of the tails of finite time Lyapunov exponents was
used to get informations about qualitative changes in the
dynamics of coupled maps in [3], the detection of small
regular islands in [4,5], or motion of a particle in a random
time-dependent potential [6] (see also [7] for an example in
hyperbolic dynamics). A rigorous analysis, inspiring the
present work, was presented in [8,9]: originally [8] a class of
one-dimensional maps f was taken into account (the theoret-
ical analysis was extended to higher dimensional systems in
[10]: if we denote by A the Lyapunov exponent, and by
P,(\,) the distribution of finite time estimates
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then, by fixing a threshold X such that 0< X<\ we may
estimate the fraction of initial conditions yielding an estimate
below the threshold

Mi(n) = f b AP, 2)

The quantity My (n) asymptotically vanishes if the system is
ergodic (as we always suppose): for weakly chaotic system it
may however decay polynomially,

M) ~ =, (3)

in such a case a bound is proven [8] for correlation decay,

1
Cln) = D 4)

where, as usual,

C(n) = f d (%) () (7 (x))

where ¢ and ¢ are taken in a suitable class of smooth ob-
servables [11] and w is the invariant measure of the system.
Actually in [8] My(n) is defined in a slightly different way
(a full equivalence is established only via further assump-
tions): our definition accomplishes a twofold purpose: on the
one side it allows a comparison with large deviation esti-
mates in [9], and on the other side it yields an easily com-
putable quantity.

This actually leads to the main point of our paper: we
argue that scrutinizing the way in which My (n) decays pro-
vides an extremely efficient way of studying quantitatively
the decay of correlations, a key issue in the analysis of fully
and weakly chaotic dynamical systems. As a matter of fact
direct quantitative estimates of mixing rates are known to be
quite delicate numerically [12], and many efforts have been
devoted to devise how to tackle the problem by alternative
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approaches, such as return time statistics [ 12—15], which can
be rigorously shown to yield the correct answer in 1d inter-
mittency [16].

The plan of the paper is as follows: first we suggest, in
view of recent results [9], that estimate (4) is not optimal,
and the decay properties of Mjy(n) and C(n) are the same;
then we check such a conjecture for a class of one-
dimensional intermittent maps, where polynomial decay
rates of correlations are known exactly. We then consider an
intermittent area-preserving map, which is a prototype ex-
ample of intermittency in higher dimensions. We finally re-
investigate, by this technique, the problem of generic corre-
lation decay in maps with a mixed phase space: in all cases
the results are coherent with exact results, and corroborate
proposed conjectures, in a clean, controlled way.

II. LARGE DEVIATIONS AND CORRELATION FUNCTION

The way in which we defined Mj(n) (2) is in the form of
a large deviation result [17]: a remarkable connection be-
tween large deviations properties and correlation decay was
proven in [9] (see also [18]): if we consider a system for
which correlation of smooth functions decay polynomially
(the smoothness is essential [11], see also [19]) C(n)~n"¢
then the following results hold, for (Césaro) finite time aver-
ages of an observable ¢:

.

w being again the invariant measure, while ¢ denotes the
phase average of the observable. In one dimension, by taking
d(x)=In|f"(x)| this suggests that bound (4) could be sharp-
ened, in such a way that correlation decay and large devia-
tions are characterized by the same power-law exponent: on
the other side in dimensions higher than one finite estimates
of Lyapunov exponents (computed for instance by selecting
the largest eigenvalue of the product of jacobians along a
trajectory) lack composition structure of Césaro sums. Our
claim is that, despite these provisos, the asymptotic decay of
M5 (n) quantitatively reproduces exactly the decay of corre-
lations, and inspection of such a quantity provides an excel-
lent tool to investigate the weak-chaos regime.

Before applying such a method to a number of dynamical
systems, we point out that the way in which we consider the
exponent £ is as the lowest possible value in a suitable class
of (zero mean) smooth functions: it is well known that spe-
cific choices of observables may yield faster decay (see [20]
for a rigorous example in one-dimensional intermittent dy-
namics).

n-1 B 1
™' 2 ¢ V) - ¢l > 6) =Chpez (9
k=0 n

A. One-dimensional system: the Pikovsky map

Our first benchmark tool is represented by Pikovsky map
[21] T, which is implicitly defined by
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FIG. 1. (Color online) Numerical data (symbols), and regression
fits (lines) of power-law decay of Mj(n) for Pikovsky map for
three different values of the intermittency exponent. The fit for the
case z=1.5 starts at n=3000. Theoretical values for ¢, from Eq. (7),
are §=2, é=1, and é=1/3.

2lz[l +T.(x)F, 0<x<1/(22)
x= . (6)
T.(x) + 2i[1 ~T.0F, 1/(Q2z)<x<1
Z

while for negative values of x, the map is defined as
T.(—x)==T.(x) [21]. Such a map has remarkable features, as
in x=*1 two marginal fixed points of the Pomeau-
Manneville type are present (and z is the corresponding in-
termittency parameter), while for any value of z the invariant
measure is Lebesgue [21], as it can be seen by direct inspec-
tion of the Perron-Frobenius operator. For this map the cor-
relations decay polynomially, with an exponent that depends
upon the intermittency parameter z [22],

C(n) ~ n VD, (7)

This decay is very well reproduced by numerical simulations
for Mj(n), as we see from Fig. 1. We remark that the nu-
merical simulations for the Pikovsky map were performed by
using 10° initial conditions uniformly chosen in the phase
space [-1,1].

When we want to check how well correlation decay is
reproduced by large deviations, expressed by the decay of
M;(n), we have to be careful to take the large deviation

parameter X sufficiently far from the center of the distribu-
tion: even if the general expectation is the asymptotic decay
law will not depend upon the cutoff, finite time estimates
require that M picks up only contributions in the tail of the

distribution. As a matter of fact any choice of the cutoff X
will determine a time scale 7 such that only after such a
transient the asymptotic decay is reproduced correctly. This
is well illustrated in Fig. 2 where were chosen three values of

X and we obtained the asymptotic decay for all cases, but
with different time scale 3.

In Fig. 3 we show the shape (bimodal) of (normalized)
finite time distribution P,(\,) for map (6): as ergodicity pre-
dicts, they tend to a Dirac 6 centered on A in the asymptotic
limit, but the tails are polynomially “fat” for finite times. In
the inset (inside Fig. 3) we can detect an interesting feature:
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FIG. 2. (Color online) Decay of Mj(n) for system (6) with

2=2.0, for different cutoffs \, where the red (gray) curve is a re-
gression fit of power-law decay with exponent {=1.

by analyzing the distribution of Lyapunov exponents closer
to zero in logarithmic scale it is possible see how the distri-
bution obeys a power-law decay with time.

As a final remark we point out that, though large deviation
estimates such as Eq. (5) are symmetric with respect to the
asymptotic phase average, from a physical point of view it is
quite natural to focus the interest on the small instability
branch, as it is precisely anomalous proliferation of almost
stable segments of trajectories that induces transition from
exponential to power-law decay of temporal correlations.

B. Two-dimensional systems: a family of area-preserving
maps

The second dynamical system we consider is a family of
area-preserving maps on the two torus [, )2, depending
on two parameters € and 7,

(8)

Xn+1 =X+ Yusl mod 277,

where f(x,) is defined by
f(xn) = [xn - (1 - 8)Sin(xn)]7' (9)

A map of this family was introduced in [23], and different
features were analyzed in [24-27]: we recall a few of the
relevant properties. When £ >0 the map is hyperbolic, while
for £=0 the fixed point at (0,0) becomes parabolic: in such a
case dynamics close to the fixed point depends on the value

=y, +f(x,) mod2w
M(a”y):{ynﬂ y f( n)
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FIG. 3. (Color online) Distribution of Lyapunov exponents
P,(\,) for map (6) with z=2.0. Inset: a magnification of P,(\,) is
shown in logarithmic scale. The distribution of Lyapunov exponents
closer to zero show a polynomial decay with time.

of v, which plays the role of an intermittency parameter:
correspondingly the decay of correlations is exponential in
the former case, while in the latter a power law is expected,
with an exponent depending on 7. In [27] the following law
was proposed:

C(n) ~ n—3(y+1)/(37—1); (10)

in the case y=1 a rigorous bound is proven [26]
|C(n)|=n~? [while Eq. (10) predicts an exponent —3].

Our numerical experiments encompass both regimes: in
Fig. 4(a) a hyperbolic parameter choice leads to an exponen-
tial decay rate for My(n), while in the intermittent case a
power law is observed, with an exponent in agreement with
Eq. (10) [see Fig. 4(b)]. In this case the numerical results
were obtained by using 10° and 10% initial conditions uni-
formly distributed in the phase space, respectively.

The case reported in Fig. 4(b) allows to scrutinize the
numerical virtues of our approach with alternative methods
(that were employed in [27]): it provides estimates as sharp
as the analysis of return time statistics (by employing how-
ever much less initial conditions), while it outperforms direct
computation of correlations.

C. Ensemble of modified standard maps

The last case we present concerns a general issue, namely
whether universality properties are exhibited for Hamiltonian
systems with a hierarchical (mixed) phase space. This is a

10° 10* 10°
(b) n

FIG. 4. (Color online) Decay Mj(n) (symbols) together with a regression fit (full lines) for map (8) with (a) e=0.5 and y=1 (exponential
rate decay 0.87=0.01) and (b) e=0 and y=1 (polynomial rate decay 3.05 = 0.05). Both fits were done by starting at n=3000.
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much debated issue (we refer to [28,29] for relevant refer-
ences over the last twenty years): in particular [28] suggests,
on the basis of a Markov tree model [30] with random scal-
ing factors for transition probabilities, the existence of an
asymptotic algebraic decay for the Poincaré recurrences. The
authors also discuss in detail the numerical difficulties in
probing such a claim: in particular, following [31,32] they
advocate that an average over different Hamiltonian systems
significantly reduces the extremely long times that are re-
quired for a single trajectory to sample fine details of the
phase-space structure: this procedure allows them to check
for an ensemble of area-preserving maps their proposal, and
the polynomial decay exponent of Poincaré recurrences is
estimated as y=1.57%+0.03, which, according to [12-15],
suggests for correlations the decay law

C(n)~#. (11)

The exponent of algebraic decay of Poincaré recurrences was
also numerically investigated in [29] (with an estimate
x=1.60=£0.05), for a different ensemble of area-preserving
maps, which we also utilize in the present framework.

The ensemble of modified standard maps on [—r,)?
considered here are given by

=p,+Ksin(x,) + K"
PK!KT:{erl Pn (n) . (12)

Xp+1 = Xp + Pptt

where K and K' are the nonlinear parameter and magnetic
field, respectively. They are uniformly chosen in the
intervals K e [7,1.2- 7] and K" €[0.0,0.4- 7]. We have used
10° initial conditions taken uniformly in the square
xp€[-0.1,0.1], poe[-0.1,0.1], well inside the chaotic re-
gion. The behavior we show in Fig. 5 apparently arises after
a few (~10) random realizations of the maps: the overall
decay rate with an exponent 0.57 = 0.05 is stable, as well as
the oscillations that may be noticed in Fig. 5. Wether such
oscillations are due to finite-size effects, corrections to scal-
ing, or multifractality [33], is a feature that in our opinion
deserves further investigations. Again we remark that the
present method has an important advantage that it needs a
“small” number of initial conditions and realizations of the
map to show the asymptotic decay of Mj(n) as compared
with traditional procedures using direct computation of cor-
relation functions or Poincaré recurrences.
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FIG. 5. (Color online) Distribution of largest Lyapunov expo-
nents for 40 realizations of map (12). The black curve is the average
over all curves and the red (gray) line corresponds to the fit of
average. The fit decay with an exponent 0.57 = 0.05. The fit was
done by starting at n=>500.

III. CONCLUSIONS

We have shown how the analysis of large deviations for
Lyapunov exponents provides a very efficient way to inves-
tigate correlation and Poincaré recurrences decay for dy-
namical systems: in particular when dealing with weakly
chaotic systems, with associated polynomial correlation de-
cay, the power-law exponent has been computed from the
distribution function of finite time Lyapunov exponents with
remarkable accuracy.

We also remark that in all our tests this procedure per-
forms quite well numerically: for instance in our last ex-
ample the estimate has been obtained with a computational
effort significantly reduced with respect to former simula-
tions [28,29]. Another interesting point we plan to investi-
gate in the future is to study the decay law of correlation
function in higher dimensional systems where the nonlinear-
ity is not uniformly distributed along different unstable di-
rections [34].
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